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Abstract

This paper addresses the pose recovery problem of a particular articulated object: the human body. In this model-based approach, the 2D-shape
is associated to the corresponding stick figure allowing the joint segmentation and pose recovery of the subject observed in the scene. The main
disadvantage of 2D-models is their restriction to the viewpoint. To cope with this limitation, local spatio-temporal 2D-models corresponding
to many views of the same sequences are trained, concatenated and sorted in a global framework. Temporal and spatial constraints are then
considered to build the probabilistic transition matrix (PTM) that gives a frame to frame estimation of the most probable local models to use
during the fitting procedure, thus limiting the feature space. This approach takes advantage of 3D information avoiding the use of a complex 3D
human model. The experiments carried out on both indoor and outdoor sequences have demonstrated the ability of this approach to adequately
segment pedestrians and estimate their poses independently of the direction of motion during the sequence.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Human motion capture and analysis has grown to become
one of the most active research topics in computer vision over
the past decade [1]. This is mainly motivated by the wide
spectrum of promising applications in many fields such as
video-surveillance, human–machine interfaces, medical diag-
nosis, sports performance analysis or biometrics.

The human motion analysis divides into three main inter-
acting levels as described in Ref. [2]: human detection, hu-
man tracking and human behavior understanding. The detection
stage that aims at segmenting people from the rest of the im-
age is a significant issue since the performance of the other two
processes highly depends on it. Human activity understand-
ing relies on accurate detection and tracking, but a good prior
knowledge of pose can also improve considerably both detec-
tion and tracking.
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Many efficient systems are based on the use of a model which
is, most of the time, a representation of the human body. In
previous works, the structure and appearance of the human body
have been represented as 2D or 3D stick figure [3], 2D (active)
contour or shape [4–6], binary silhouette [7] or 3D volumetric
model [8,9]. The selection of the appropriate model is a critical
issue and the use of an explicit body model is not simple, given
the high number of degrees of freedom of the human body and
the self-occlusions inherent to the monocular observation.

People are able to deduce the pose of a known articulated
object (e.g. a person) from a simple binary silhouette. The pos-
sible ambiguities can be solved from dynamics when the object
is moving. Following this statement, the first step of this work
consists in constructing a human model that encapsulates within
a point distribution model (PDM) [10] both body silhouette in-
formation provided by the 2D-shape and structural information
given by the 2D skeleton joints. In that way, the 2D pose could
be inferred from the silhouette and vice versa. Due to the high
non-linearity of the resulting feature space, mainly caused by
the rotational deformations inherent to the articulated structure
of the human body, the use of non-linear statistical models will
be considered in this work. This approach will be compared to
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other two methods previously tested for solving non-linearity
issue. Such non-linear statistical models have been previously
proposed by Bowden [11] that demonstrated how the 3D struc-
ture of an object can be reconstructed from a single view of
its outline. While Bowden only considered the upper human
body and the frontal view, in this work the complete body
will be modelled and viewpoint changes will be taken into
account.

One of the difficulties when employing 2D-models relies on
dealing with this viewpoint issue. Most of the previous related
works are based on the fundamental assumption of “in-plane”
motion or only present results obtained from data satisfying
such condition [12]. Few consider motion-in-depth and out-of-
plane rotation of the tracked people. Freeing algorithms from
the view dependency appears as a critical issue for practical
applications. Therefore, the goal of this work is to construct
2D dynamical models that can perform independently of the
orientation of the person with respect to the camera and that
can respond robustly to any change of direction during the
sequence.

1.1. Related work

There are basically two main schools of thought on human
pose recovery: model-based top-down approaches and model-
free bottom-up strategies. Model-based approaches presuppose
the use of an explicit model of a person’s kinematics [9,13]. The
number of degrees-of-freedom and the high dimensionality of
the state space make the tracking problem computationally diffi-
cult. Recent research has investigated the use of learnt models of
human motion to constraint the search in state space by provid-
ing strong priors on motion [12,14,15]. In bottom-up strategies,
the individual body parts can be detected and then probabilis-
tically assembled to estimate the 2D pose as in Ref. [16] or an
example-based method can be followed. This last method con-
sists in comparing the observed image with a database of sam-
ples as in Refs. [17–19] to cite a few. In some cases, a mapping
from 2D image space to 3D pose space is learnt for directly es-
timating the 3D pose [20–22]. Instead of storing and searching
for similar examples, Agarwal and Triggs [20] use non-linear
regression of joint angles against shape descriptor vectors to
distill a large training database into a compact model. Grauman
et al. [22] inferred the 3D structure from multi-view contour
using a probabilistic “shape+structure” model. As mentioned
before, this idea was first introduced by Bowden [11].

Shape-models have appeared as powerful tools for human
motion analysis. Baumberg and Hogg [4] used active shape
models to track pedestrians from a fixed camera. The same ac-
tive shape tracker was considered by Siebel and Maybank [6]
that extended it by a head detector and a region tracker, all in-
tegrated in the visual surveillance system ADVISOR. Fan et al.
presented in Ref. [23] a compound structural and textural im-
age model for pedestrian registration. In Ref. [24], the authors
exploit the shape deformations of a person’s silhouette as a dis-
criminative feature for gait recognition, indicating that methods
based on shape perform better than methods based on kinemat-
ics alone. Giebel et al. [25] proposed a Bayesian framework

for tracking pedestrians from a moving vehicle: a method for
learning spatio-temporal shape representations from examples
was outlined, involving a set of distinct linear subspace mod-
els. Recently, Zhang et al. [26] introduced a statistical shape
representation of non-rigid and articulated body contours. To
accommodate large viewpoint changes, a mixture of a finite
number of view-dependent models is employed.

1.2. Overview of the work

This paper presents a novel probabilistic spatio-temporal 2D-
models framework (STMF) for human motion analysis. In this
approach, the 2D-shape of the entire body is associated to the
corresponding stick figure allowing the joint segmentation and
pose recovery of the subject observed in the scene. The first
step of this work, described in Section 2, thus relies on the
construction of the “shape–skeleton” training data set: contour
parameters are associated to the corresponding 2D joints ex-
tracted from many different training views of the same walking
sequences (varying azimuth angle of the camera).

The framework construction is then detailed in Section 3.
First, a novel technique is presented for shape clustering that
establishes dynamics correspondences between the different
training views. Basically, a structure-based clustering of the
training shapes is achieved by partitioning the 3D pose param-
eters subspace, thus dividing the gait cycle into a series of basic
steps. The resulting labelling is then used to construct the non-
linear models in each training view where a mixture of PCA
models is learned using the expectation maximization (EM)
algorithm [10,27,28], the clusters being used at initialization.
The method is compared to other two approaches previously
developed to deal with non-linearity: nearest neighbor (NN)
classifier and independent component analysis (ICA).

Using the motion-based partitioning and the spatial cluster-
ing directly provided by the training views, a spatio-temporal
clustering is obtained in the global shape–skeleton eigenspace:
the different clusters correspond in terms of dynamic (temporal
clusters) or viewpoint (spatial clusters). A local 2D-model is
then built for each spatio-temporal cluster, generalizing well for
a particular training viewpoint and state of the considered ac-
tion. All those models are concatenated and sorted, what leads
directly to the construction of the global STMF presented in
Fig. 1.

Given this huge amount of data, an efficient search method
is needed. In that way, temporal and spatial constraints are
considered to build a probabilistic transition matrix (PTM). This
matrix limits the search in the feature space by giving a frame
to frame estimation of the most probable local models to be
considered during the fitting procedure. This constraint-based
search is described in Section 4.

Once the model has been generated (off-line), it can be ap-
plied (on-line) to real sequences. Given an input human blob
provided by a background subtraction, the model is fitted to
jointly segment the body silhouette and infer the posture. This
model fitting is explained in Section 5.

Experiments are presented in Section 6 where both segmen-
tation and 2D pose estimation are tested. The main goal of
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Fig. 1. Spatio-temporal shape–skeleton models framework: 1st variation
modes of the 48 local models that compose the framework. The columns of
this matrix correspond to the gait steps (temporal clusters) while the rows
represent the eight camera views (spatial clusters).

this part is to test the robustness of the approach w.r.t. the
viewpoint changes with realistic conditions: indoor, outdoor,
cluttered background, shadows, etc. In that way, the following
hypothesis will be considered to select the different testing se-
quences: only one walking pedestrian per sequence, with no oc-
clusions but with important viewpoint changes. Note that both
training and testing sets comprise of hand-labelled data. The
CMU MoBo database [29] will be used for training and real
video-surveillance sequences for testing [30]. The HumanEVA
data set, recently introduced by Sigal and Black [31], will be
considered for numerical evaluation of the pose estimation.

Section 7 finally concludes with some discussions and ideas
for future work.

2. Shape–skeleton training database

The goal is to construct a statistical model which represents a
human body and the possible ways in which it can deform. Point
distribution models (PDMs) are used to associate silhouettes
(shapes) and the corresponding skeletal structures.

2.1. Training database construction

The generation of the 2D deformable model follows a pro-
cedure similar to [32]. CMU MoBo database [29] is consid-
ered for the training stage: good training shapes are extracted
manually trying to get accurate and detailed approximations of
human contours. Simultaneously, 13 fundamental points corre-
sponding to a stick model are extracted: head center, shoulders,

Fig. 2. From left to right: MoBo image, 2D skeleton and shape normalization:
(A) hand-labelled landmarks, (B) rectangular grid and (C) 120 normalized
landmarks, part of them grouped at “repository points”: 24–26 at RP2, 46–74
at RP3 and 94–99 at RP1.

elbows, wrists, hips, knees and ankles. The skeleton vectors are
then defined as

ki = [xk1, . . . , xk13, yk1, . . . , yk13]� ∈ R26, (1)

with i = 1, . . . , Nv , Nv being the number of training vectors.
Two gait cycles (low and high speed) and four viewpoints
(frontal, lateral, diagonal and back views) are considered for
each one of the 15 selected subjects. This manual process leads
to the generation of a very precise database but without shape-
to-shape landmark correspondences.

2.2. Shapes normalization

The good results obtained by a PDM depend critically on
the way the data set has been normalized and on the corre-
spondences that have been established between its members
[33]. Human silhouette is a very difficult case since people can
take a large number of different poses that affect the contour
appearance. A big difficulty relies on establishing correspon-
dences between landmarks and normalizing all the possible hu-
man shapes with the same number of points. In this work, it is
proposed to use a large number of points for defining all the
contours and “superpose” those points that are not useful (see
Fig. 2).

A rectangular grid with horizontal lines equally spaced is ap-
plied to the contours database. This idea appears as a solution to
the global verticality of the shapes and the global horizontality
of the motion. The intersections between contours and grid are
then considered. The shapes are then divided into three differ-
ent zones delimited by three fixed points: the higher point of the
head (FP1) and the intersections with a line located at 1

3 of the
height (FP2 and FP3). A number of landmarks is thus assigned
to each segment and a repository point (RP) is selected to con-
centrate all the points that have not been used. In this paper, all
the training shapes are made of 120 normalized landmarks:

si = [xs1, . . . , xs120, ys1, . . . , ys120]� ∈ R240, (2)

with i = 1, . . . , Nv .
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2.3. Shape–skeleton eigenspace—PCA model

Shapes and skeletons are now concatenated into
shape–skeleton vectors:

vi = [s�i k�i ]� ∈ R266, (3)

with i = 1, . . . , Nv . This training set is aligned using Pro-
crustes analysis (each view being aligned independently) and
principal component analysis (PCA) is applied [10] for di-
mensionality reduction on the four view-based training sets.
In that way, four view-dependent shape–skeleton models are
constructed by extracting the mean vector and the variation
modes:

vi � v̄� +��bi , (4)

where v̄� and �� are, respectively, the mean shape–skeleton
vector and the matrix of eigenvectors for the training viewpoint
�. b is the projection of vi in the corresponding eigenspace i.e.
a vector of weights bi = [b1, b2, . . . , bn]�. The main problem
is that the PCA assumes a Gaussian distribution of the input
data. This supposition fails because of the inherent non-linearity
of the feature space and leads to a wrong description of the
data: the resulting model can consider as valid some implausi-
ble shape–skeleton combinations. Other approaches have to be
taken into account to generate the “shape–skeleton” model and
adequately represent the training set.

3. Spatio-temporal 2D-models framework

Many researchers have proposed approaches to non-linear
PDM [10,11]. The use of Gaussian mixture model (GMM)
was first proposed by Cootes and Taylor [10]. They suggested
modelling non-linear data sets using a GMM fitted to the data
using the EM algorithm. This provides a more reliable model

Fig. 3. Low and high speed gait cycles represented on the three first modes of the pose eigenspace.

since the feature space is limited by the bounds of each Gaussian
that appear to be more precise local constraints:

pmix(b)=
m∑

j=1

�jN(b : b̄j , Sj ), (5)

where N(b : b̄, S) is the p.d.f. of a Gaussian with mean b̄ and
covariance S.

Bowden [11] proposed first to compute linear PCA and
to project all shapes on PCA basis. Then do cluster analy-
sis on projections and select an optimum number of clusters.
Each data point is assigned to cluster and separate local PCA
are performed independently on each cluster. This results in
the identification of local model’s modes of variation inside
each Gaussian distribution of the mixture: b � b̄j + �j r
(see Eq. (4)). Thus a more complex model is built to rep-
resent the statistical variations. Given the promising results
described in Ref. [11], a similar procedure is followed in
this work, the main difference relying on the way the fea-
ture space is clustered: the proposed methodology consists in
partitioning the complete shape–skeleton feature space using
only the dynamical information provided by the pose param-
eters. The contour parameters are not taken into account for
clustering since they do not provide any additional informa-
tion on dynamics and can lead to ambiguities as stated in
Ref. [20].

3.1. Structural clustering

While in Ref. [25], the clustering of the shape feature space
was based on a similarity measure derived from the registration
procedure, here it is proposed to use the structural information
provided by the pose to cluster both shape and skeleton train-
ing sets, thus establishing dynamical correspondences between
view-based data.
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Fig. 4. (a) Negentropy of the 20 first modes of the pose eigenspace, (b) Negentropy of the GMM (mean and std. dev.) vs. number of clusters and (c) resulting
GMM for k = 6, represented in the pose eigenspace together with the gait cycles.

3.1.1. Pose eigenspace for clustering
The information provided by the 3D poses is used for

clustering: for each snapshot of the training set, the 3D
skeleton is built from the corresponding 2D poses ki of
the four views, by reconstructing the 3D position of the
joints using the four 2D-projections and Tsai’s algorithm
[35]. The resulting set of 3D poses is then aligned us-
ing Procrustes and reduced by PCA obtaining the pose
eigenspace (Fig. 3) where the dynamic-based clustering will be
operated.

3.1.2. Principal components selection
The non-linearity of the training set is mainly localized in

the first components of the PCA that capture the dynamics,
as shown in Fig. 3. These components are really influential
during the partitioning step while the last ones, more linear,
only model local variations (details) and do not provide so much
information for clustering. Only the first non-linear components
are thus selected to perform the clustering of the data in a
lower dimensional space. For components selection, the non-
Gaussianity of the data is measured on each component. There
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Fig. 5. (a) Correspondences between gait cycle and the six clusters obtained, (b) Markov state transition matrix and (c) state diagram.

are different methodologies to test whether the assumed normal
probability distribution accurately characterizes the observed
data or not. Skewness and kurtosis are two classical measures
of non-Gaussianity.

A more robust measure is given by the Negentropy, the clas-
sic information theory’s measure of non-Gaussianity, whose
value is zero for Gaussian distribution [34]. Fig. 4a shows how
the Negentropy converges to 0 and oscillates when consider-
ing lower modes. This oscillation between 0 and 0.75× 10−4

starts from the 4th mode. It can be observed how the first
three modes present a much higher Negentropy compared to
the other modes. According to this analysis, we select the first
three components for clustering.

3.1.3. Determining the number of clusters
K-means algorithm is used fairly frequently as a result of

its ease of implementation. K-means clustering splits a set
of objects into a selected number of groups by maximizing
between variations relative to within variations. The main dis-
advantage of this algorithm is its extreme sensitivity to the
initial seeds. A solution could be found by applying K-means
several times, starting with different initial conditions and then
choosing the best solution. But this supposes a supervision that
makes the process more ad hoc. To make the clustering inde-
pendent from the initial seeds, the K-means algorithm is ran
many times and the total results are clustered as in Ref. [36].

For each case (K = 2, . . . , N), a GMM is fitted to the pose
eigenspace using the EM and a local PCA’s is applied on each
cluster. Since local modes of variation inside each Gaussian
distribution of the mixture are expected, one of the aspects that
should be evaluated when determining the optimal number of
cluster is the global Gaussianity of the GMM. All the points
of the training set are then projected onto the corresponding
local PCA space and the Negentropy is computed for each
cluster.

In Fig. 4b, the evolution of the mean Negentropy can be
observed for K varying from 2 to 18. The curve decreases
and converges logically to 0. It is desired to create as few
clusters as possible and obtain some clusters as Gaussian as
possible. A good compromise between number of clusters and
Gaussianity is reached at K=6 where the std. of the Negentropy
substantially decreases compared to the one at K = 5. Fig. 4c
shows the GMM obtained with K = 6, represented in the pose
eigenspace. This graphical representation shows the accuracy
of GMM only by simple visual criteria: comparing with Fig. 3,
it can be observed how well the GMM limits the feature space.

This leads to the recognition of basic gait cycle phases [37],
as illustrated by Fig. 5, in an unsupervised way. The patches are
ordered according to the logic of the cyclic motion: C1 starts
with the right mid-swing and ends with the double support
phase, then C3 starts until the left mid-swing. C4 follows until
the second double support of the cycle which ends with C6. C2
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Fig. 6. GMM represented on the two first components of the shape–skeleton eigenspace for the (a) lateral and (b) back views.

and C5 complete C3 and C6 phases in case of a higher speed gait
with larger step. A Markov state transition matrix (STM) [38]
is then constructed (Fig. 5b), associating each sample to one of
the six patches. Each temporal cluster corresponds to a state in
the Markov chain. This gives the state transition probabilities,
valid for the four sets (views) of SS-vectors.

3.2. View-based non-linear models

A view-based mixture of PCA is now fitted to the four
shape–skeleton eigenspaces, using the structure-based cluster-
ing obtained before. Fig. 6 shows how the different mixtures
limit the feature spaces: the clustering imposes a particular lo-
cation of the Gaussian distribution (represented as ellipsoids)
that consequently treat some unseen data as valid by interpolat-
ing. Fig. 7 shows how both shape and skeleton deform linearly
in each one of the cluster of the view-based GMM. Dynamic

correspondences are obtained between Gaussian models of the
four mixtures, each cluster corresponding to one of the six ba-
sic gait phases.

3.2.1. Joint estimation of shape and skeleton
In Ref. [22], Grauman inferred 3D structure from multi-view

contour. Following the same idea, when presented a new shape,
the unknown 2D structure (structural parameters) is treated as
missing variables in an SS-vector. The corresponding b∗ is
then computed from Eq. (4) and the nearest cluster, defined by
eigenvectors �= [�1, . . . ,�t , . . . , �T ] and eigenvalues �t , is
selected. Thus the closest allowable SS-vector from the model
is constructed by finding r so that

r =�−1(b∗ − b̄) and − �
√

�t �rt ��
√

�t . (6)

To ensure a valid SS-vector generation, the weight vector r is
constrained to lie in the hyper-ellipsoid representing the linear
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subspace model [32]. This leads to a model-based estimation
of both shape and skeleton (cf. Fig. 9).

Fig. 7. Principal modes of variation of the six corresponding Gaussian models
for the four view-based GMMs: (a) lateral, (b) diagonal, (c) frontal and (d)
back views.

Fig. 8. (a) Reconstruction error, (b) fitting error obtained applying our GMM on the four Caviar sequences and (c) comparative results for the NN, ICA and
GMM.

3.2.2. Non-linear models testing
The first approach we followed to cope with the non-linearity

of the eigenspace was to select the closest allowable shape from
the training set by means of an NN classifier [39].

This technique always warranties a valid contour but is im-
perfect because it cannot generate new shapes absent from the
training data. Moreover, the computational cost makes this ap-
proach infeasible with a very large database. In Ref. [36] we
proposed to use ICA for human shape modelling. The dynamic-
based GMM developed in this paper will be compared to both
methods.

For the evaluation of the view-based models, four gait se-
quences whose viewpoints correspond more or less to the four
training views (cf. Fig. 9) are selected from the Caviar database
[30]. On the one hand, groundtruth data are constructed by
manually extracting the silhouettes of selected people ap-
pearing in the scene and on the other hand, human blobs
are calculated by motion detection. Errors will be calculated
as Euclidean distances between groundtruth and estimated
shapes.

Two kinds of errors can be estimated: reconstruction and
fitting errors. The first one is calculated by projecting and re-
constructing a groundtruth shape with the model: this error

Fig. 9. Selected Caviar sequences for testing frontal (left) and diagonal (right)
views-based GMM. For each of the two sequences, a frame with fitted shape
is presented as well as the 2D poses automatically generated when applying
the SS-model along the sequence.
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characterizes the ability of the model to generate new silhou-
ettes. The reconstruction error decreases and converges logi-
cally for the four models when augmenting parameter � from
Eq. (6) (see Fig. 8a). The fitting error is calculated by correct-
ing the shape extracted from the human blob with the model:
this error characterizes the ability of the model to correct bad
shapes. In Fig. 8b, it can be observed how the reconstruc-
tion error decreases until a minimum value and then starts in-
creasing for the four models when augmenting �. This allows
us to determine the optimal value of � for every view-based
GMM. In Fig. 8c, fitting errors obtained when applying GMMs,
NN and ICA are compared for the four views (four Caviar
sequences).

GMM exhibits best results than both ICA and NN meth-
ods, and shows a better capability to reconstruct unseen shapes.
Moreover computational cost of GMM mainly appears during
the off-line stage (model construction) while the NN method
requires an online comparison to the training exemplars. This
makes this approach much more feasible for real-time applica-
tions with large databases of different poses and motions.

These four training views are obviously not sufficient to
model all the possible orientations of the subject w.r.t. the cam-
era and a more complete model must be built, considering other
camera viewpoints. All the resulting models will be included
in a global multi-view 2D-models framework.

3.3. Construction of the global 2D-models framework

Recently some authors have proposed a common approach
consisting in discretizing the space considering a series of view-
based 2D models [26,40]. In the same way, eight different
viewpoints will be considered, uniformly distributed between 0

Fig. 10. Training views considered for framework construction.

Fig. 11. 48-Clusters Gaussian mixture model plotted with training data projected onto the planes defined by (a) 1st and 2nd, (b) 3rd and 4th, (c) 5th and 6th
and (d) 7th and 8th components of the shape–skeleton eigenspace.

and 2�, thus discretizing the frontal view (vertical image plane)
into eight sectors. For each sequence, the four training view-
points used up to that point are now completed by a 5th supple-
mentary back view that is also manually labelled. Finally, the
last three missing views are interpolated using the periodicity
and symmetry of human walking. By this process, a complete
training database is generated encompassing more than 20 000
shape–skeleton vectors, SS-vector (more than 2500 vectors per
viewpoint). The resulting eight view-based shape–skeleton as-
sociations for a particular snapshot of the CMU MoBo database
are presented in Fig. 10.

The complete set of SS-vectors is concatenated in a com-
mon space (the eight views together) whose dimensionality is
reduced using PCA, obtaining

vi � v̄ + �vai , (7)

where v̄ is the mean SS-vector, � is the matrix of eigenvectors
and ai is the new vector represented in the eigenspace. Let us
call A the shape–skeleton eigenspace {ai}.

A series of local dynamic motion models has been learnt
by clustering the structural parameters subspace. As mentioned
in Section 3.1, the gait cycle is divided into six basic steps,
providing the temporal clusters Cj , while the eight training
views directly provide the spatial clustering (clusters Rr ). The
different clusters correspond in terms of dynamics or view-
point. Using this structure-based partitioning and the corre-
spondences between training viewpoints, 48 spatio-temporal
clusters {{Tj,r = Cj ∩ Rr}6j=1}8r=1 are obtained in the global
shape–skeleton feature space where all the views considered
are projected together.

Thus, following Ref. [11], a local linear model is learnt for
each spatio-temporal cluster Tj,r and a mixture of PCA is fitted
to the clustered A space, obtaining a new STMF. For each
cluster, the local PCA leads to the extraction of local modes
of variation, in which both shape and skeleton simultaneously
deform (see Fig. 12). Parameters for the 48 Gaussian mixture
model components are determined using EM algorithm. The
prior shape–skeleton model probability is then expressed as

pmix(a)=
∑

j,r

�j,rN(a : āj,r , �j,r ), (8)
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where a is the eigendecomposition of the shape–skeleton vec-
tor, N(a : ā, �) is the p.d.f. of a Gaussian with mean ā and
covariance � and �j,r is the mixing parameter corresponding
to Tj,r .

Fig. 11 shows the mixture projected onto various planes of
the eigenspace space A. The 48 hyper-ellipsoids corresponding
to the 48 local spatio-temporal models are also plotted. It can
be appreciated how well the GMM delimits the subspace of
valid SS-vectors.

Given this huge amount of data, an efficient search method
is required. In that way, temporal and spatial constraints will be
considered to constrain the evolution through the STMF along
a sequence and limit the feature space only to the most probable
models of the framework.

4. Constraint-based search

The total space has been clustered following temporal
approach (clusters Cj ) as well as spatial approach (clus-
ters Rj ) as described in the previous section. The first one
partitions the dynamics of the motion, and the second one,
the viewpoint i.e. the direction of motion in the image. The
purpose of the following probabilistic modelling is to ob-
tain a transition matrix combining both spatial and temporal
constraints.

4.1. Markov chain for modelling temporal constraint

Following the standard formulation of probabilistic motion
model [3], the temporal prior p(St |St−1) satisfies a first-order
Markov assumption where the choice of the present state St is
made upon the basis of the previous state St−1. In the same
way, if this state space is partitioned into N clusters C =
{C1, . . . , CN }, the conditional probability mass function de-
fined as p(Ct

j |Ct−1
k ) corresponds to the probability of being in

cluster j at time t conditional on being in cluster k at time t−1
[11]. The N×N state transition matrix (STM) computed in the
previous section points out the probabilities density function
(pdfs).

4.2. Modelling spatial constraint

In this paper, a novel spatial prior p(Dt |Dt−1,...,t−m) is in-
troduced for modelling spatial constraint. It expresses the state-
ment that Dt (the present direction of motion of the observed
pedestrian in the image) can be predicted given its m previous
directions of motion (Dt−1, Dt−2, . . . , Dt−m). In this approach,
the continuous values of all possible camera viewpoints are
discretized. Consequently, the direction of motion in the image
plane Dt takes a fixed set of values corresponding to the discrete
set of M training viewpoints and M clusters R={R1, . . . , RM}
in the feature space.

Let 	t = [Rt
k0

, Rt−1
k1

, . . . , Rt−m
km
] be the m + 1-dimensional

vector representing the sequence of the m + 1 cluster labels
(denoted by ki) up to and containing the one at time t . It
has to be noted that some of these ki labels might be the

same. Consequently, p(Rt
j |	t−1) is the probability of being

in Rj at time t , conditional on being in Rk1 at time t − 1,
in Rk2 at time t − 2, etc. (i.e. conditional on the m preced-
ing clusters). In this work, a reasonable assumption is made
that this direction of motion follows a normal distribution,
with expected value equal to the local mean trajectory an-
gle �t and variance calculated as a function of the sampling
rate:

p(Rt
j |	t−1)= p(Rt

j |Rt−1
k1

, Rt−2
k2

, . . . , Rt−m
km

) ∼N(�t , �), (9)

where

�t = 1

m+ 1

t−m∑

i=t

�i ,

m being a function of the sampling frequency.

4.3. Combining spatial and temporal constraints

Let T be the N ×M matrix, whose columns represent the N

temporal clusters and rows correspond to the M spatial clus-
ters. Thus the probability p(Ct

j ∩ Rt
r) = p(T t

j,r ) denotes the
unconditional probability of being in Cj and in Rr at time t .

The conditional spatio-temporal transition probability is
therefore defined as p(T t

j,r |Ct−1
k , 	t−1), the probability of be-

ing in Cj and in Rr at time t conditional on being in temporal
cluster k at time t − 1 and conditional on the m preceding
spatial clusters. In this paper, the assumption is made that the
two considered events, state and direction changes, are inde-
pendent, even if it is not strictly true. Some comments about
this assumption will be made in Sections 6 and 7. This leads
to the following simplified equation:

pj,r = p(T t
j,r |Ct−1

k , 	t−1) ∝ p(Ct
j |Ct−1

k )p(Rt
r |	t−1). (10)

The resulting N × M matrix is the PTM that gives, at
each time step, the pdf that limits the region of interest in the
STMF to the most probable models. Considering the cyclic
nature of the walking action and the circular distribution
of the training viewpoints, the resulting PTM is a toroidal
matrix (Fig. 12) whose lines correspond to the M training
view-based gait manifolds. Its 3D and 2D representations
are illustrated in Fig. 12. All the different models can be or-
dered and classified according to their direction of motion
and state, thus putting in evidence the correspondences with
the PTM as shown in Fig. 12. Spatial and temporal relation-
ships can be appreciated between local models from adjacent
cells.

The content of the PTM can be visualized by converting it
to gray scale image as will be shown in next sections. To com-
pute this PTM and constrain the evolution through the STMF
along a sequence, only previous viewpoint and previous state
are required at each time step. Note that our approach shares
some similarities with the one recently proposed by Lv and
Nevatia [41]. In this paper, the authors model an action as a
series of 2D poses rendered from a wide range of viewpoints
and represent the constraints on transition by a graph model
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Fig. 12. 3D (left) and 2D (right) representations of the toroidal probabilistic transition matrix (PTM). The 1st variation modes of the 48 local models that
compose the framework are superposed with the 2D representation of the PTM: the six columns correspond to the six temporal clusters Ci while the eight
rows represent the eight spatial clusters Ri .

where they assume a uniform transitional probability for each
link.

5. Joint segmentation and pose estimation

A discriminative detector as the ones proposed in Ref. [42]
could be used to initialize the shape model-driven algorithm
presented next. In this work, scene context information is con-
sidered to roughly limit the feature space only to the “logical”
2D-models from the framework. For example, if an object
appears in the scene from the right side (right-to-left direc-
tion of motion), only the first three lines of the PTM will be
considered.

Once the system has been initialized, each frame of the se-
quence is processed individually by applying Segmentation-
PoseEstimation (Algorithm 1), taking advantage of previous in-
formation (trajectory angle �, state index, background B) that
is used to treat the current frame.

Algorithm 1. (s, k, B, �, index)= SegmentationPose
Estimation(B, I, �, index, nIter)

m[i] =ModelsSelection(�, index);
initialize shape s← 0;
initialize pose k← 0;
for n← 1 to nIter do

blobsList = AdaptiveBackgroundSubtraction
(B, I, s, n, nIter);
Silhouette = BlobsProcessing(blobsList);
s= ContourExtraction(Silhouette);
[s, k, index] = ShapeSkeletonCorrection(s, k, m[i]);

end for
B = BackgroundUpdate(B, I, Silhouette);

Algorithm 2. blobsList = AdaptiveBackgroundSubtraction
(B, I, s, n, nIter)

if (n==1) then
D = BackgroundSubtraction(B, I, thr);

else
Mask = ShapeToMask(s);
tlow = DecreaseThreshold(thr, n, nIter);
Dlow = BackgroundSubtraction(B, I, tlow);
thigh = IncreaseThreshold(thr, n, nIter);
Dhigh = BackgroundSubtraction(B, I, thigh);
D =Dlow ×Mask+Dhigh ×Mask;

end if
blobsList = BlobsLabelling(D);

The prediction of the most probable models from the GMM
is estimated in ModelsSelection by means of the PTM. It allows
a substantial reduction in computational cost and can solve
some possible ambiguities by considering a limited number of
models.

In ShapeSkeletonCorrection, the extracted shape s and an

estimate for the skeleton are concatenated in v=[s� k
�]� and

projected into the SS-eigenspace obtaining a. Then, for each
one of the most probable clusters given by the PTM pj,r , we
update the parameters to best fit the “local model” defined by its
mean, eigenvectors and eigenvalues, as done in Section 3.2.1,
obtaining a∗. The distance between extracted and corrected
shapes is then calculated for each one of the estimations in
order to select the best estimation. We then project the vector
a∗ back to the feature space obtaining v∗ which contains a new
estimation of both shape s∗ and skeleton k∗: v∗ = [s∗� k∗�]�.

Aside from the models and the constraint-based search pro-
posed in this work, some novelties appear in the segmentation
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Fig. 13. Model fitting: (a) original input image, (b) silhouette resulting from background subtraction, (c) silhouette after being processed by BlobsProcessing,
(d) contour extracted by silhouette erosion, (e) corrected shape represented on the silhouette and corresponding mask, (f) used for finer background subtraction,
(g) resulting silhouette after six iterations, (h) corresponding segmentation and (i) resulting shape and pose plotted on the original input image.

Fig. 14. (up) Outdoor straight-line walking sequence at constant speed and (down) Caviar sequence with slight bend trajectory.

algorithm. The first one referred to the shape extraction task
(ContourExtraction in Algorithm 1): while it is usually ex-
tracted from the blob looking along straight lines through each
model point as in Ref. [4], here the shape is directly obtained
by eroding the human blob and normalize the resulting con-
tour following the shape normalization proposed in Section 2.2.
This allows a direct, precise and faster registration of the shape
in the image. The only drawback of this shape registration is
that it requires an entire and non-fragmented silhouette. The
BlobsProcessing function thus previously applies some com-
mon morphological operations to the result of AdaptiveBack-
groundSubtraction and connect the possible fragments.

Another novelty of the fitting process appears in Adaptive-
BackgroundSubtraction that aims at reconstructing the binary
silhouette resulting from the background subtraction using the
“corrected” shape returned by ShapeSkeletonCorrection. It is
achieved by decreasing/increasing the detection threshold in-
side/outside the shape. This leads to an accurate silhouette seg-
mentation, improving considerably the results specially when
there is no significant difference between background and fore-
ground pixels.

The last novelty relies on the way the background is updated:
the final segmented silhouette, the foreground, is used to ac-
tualize the background more finely, eliminating shadows from
the foreground and improving the segmentation in next frames.

The different steps of the process are depicted in Fig. 13 for
a particular frame.

6. Experiments

The model is now evaluated with a series of testing sequences
that illustrate different situations which may occur in the anal-
ysis of pedestrian motion: straight-line walking, changes of
direction, of speed, etc. Since only model fitting and pose esti-
mationwill be tested, and not the tracking in the image, the sys-
tem is provided with the bounding-box taken from groundtruth
avoiding the possible problems due to the tracking. In the PTMs
from Fig. 14 (as well as from Figs. 18 and 19), the colored cells
represent the probability pj,r from Eq. (10). The obscured cell
is the “winning one”: the local model that best fits the silhou-
ette. For each frame, the row of the “winning” model in the
PTM indicates the orientation of the pedestrian with respect
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to the camera. Additionally, both trajectory and previous states
are, respectively, plotted in the image/matrix with a white line.

As illustrated in Fig. 14(up), the resultant vectors from a
pedestrian crossing the scene straight ahead without stopping
or turning towards anything all belong to models from the same
row of the PTM. Any change of direction is observed as a
progressive change of row (see Fig. 14(down)).

In Fig. 15, the results obtained with two challenging frames
are presented: in (a) the pedestrian is carrying a bag and in (b)
he is partially occluded by the wall. In both cases, a satisfactory
estimation is made of both shape and pose.

6.1. Framework validation

To validate the framework, the 2D poses and 2D shapes
of three different sequences with different characteristics
of interest are hand-labelled: an outdoor straight-line walk-
ing sequences at constant speed (Fig. 14(up)), an outdoor
“Walkcircle” sequences with constant speed and constant
viewpoint and scale evolution (Fig. 18) and an indoor sequence
with viewpoint and speed variations (Fig. 19). Note that the
subjects turn and move “in depth” so that both apparent scale
and viewpoint vary. A top-down estimation of depth is directly
provided by the “winning” model that points out the motion
direction in 3D space (see Fig. 14 and later Figs. 18 and 19).

Fig. 15. Results obtained with two challenging frames. For each of the two
examples, original image (left), segmentation (center) and resulting pose and
shape are represented (right).

Fig. 16. Segmentation results for (left) “Walkcircle” outdoor sequence and (right) for “elevator” indoor sequence, (up) the original image, (center) the result
obtained by simple background subtraction and (down) the result obtained by applying the proposed model-based algorithm are represented for each example.

6.1.1. Segmentation
Quantitative validation is performed by comparing with man-

ually segmented solutions, both the segmentation obtained by
simple background subtraction and the one resulting from the
proposed model-based approach. Denote the manual segmenta-
tion in the images as Sgroundtruth, and the results as Sestimated .
We define the false negative (FN) ratio to indicate the fraction
of silhouette that is included in the groundtruth segmentation
but missed by the automatic method:

FN= |Sgroundtruth − Sestimated |
Sgroundtruth

. (11)

The false positive (FP) ratio indicates the amount of foreground
falsely identified by the algorithm as a fraction of the total
silhouette in the groundtruth segmentation:

FP= |Sestimated − Sgroundtruth|
Sgroundtruth

. (12)

The true positive (TP) describes the fraction of the total sil-
houette in the true segmentation that is overlapped with the
proposed method:

TP= |Sestimated ∩ Sgroundtruth|
Sgroundtruth

. (13)

Example segmentation results are shown in Fig. 16 and av-
erage statistics compiled in Tables 1 and 2. On the outdoor
sequence, the segmentation results produce the following: FN
ratio is improved by 3.8%, FP by 14.48% and TP by 3.8%.
On the indoor sequence, only FP ratio is improved by 7.03%
while FN and TP stay unchanged. In both cases, we can ob-
serve how part of the shadow is eliminated with the proposed
method what leads directly to the FP ratio improvement.

6.1.2. Pose estimation
Fig. 17 shows the pose estimation results for the three

tested sequences. The mean position error (in pixels) is cal-
culated as the feet-distance between the skeleton estimated
by the algorithm and the hand-labelled one. Some peaks can
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be noticed in this figure. For instance, in the indoor sequence
(center) the model failed because of the excessive difference
of viewpoint-angle between training and input images, when
the subject goes in and out of the scene. In the “Walkcircle”
sequences (right) the model fails because of the stationary be-
havior of the tracking that stays stuck in a cluster during too
many frames and then can hardly get out of it. It needs to wait
until the next cycle to recuperate the dynamic behavior of the
input motion. This is due to the very low shape variability in
the back view where it is very complicated to distinguish a state
from another. For the rest of the frames, the results are globally
very satisfactory which means that the model is conveniently
tuned to the suitable viewpoints and that the assumption of in-
dependency of spatial and temporal event, made in Section 4.3,
is reasonable.

6.2. Numerical evaluation with HumanEva data set

For numerical evaluation of the framework, the four walking
sequences of the HumanEva-II data set [31] are considered:
subjects S2 and S4 observed from cameras C1 and C2.

Table 1
Segmentation results for outdoor “Walkcircle” sequence

Background subt. (%) Model-based segm. (%)

FN 9.31 5.51
FP 27.92 13.44
TP 90.69 94.49

Table 2
Segmentation results for indoor “Elevator” sequence

Background subt. (%) Model-based segm. (%)

FN 6.79 6.80
FP 20.83 13.80
TP 93.21 93.20

Fig. 17. Feet position error in pixels (bottom) and temporal clusters (top)—given by the column of the PTM corresponding to the “winning” model—of the
straight-line walking (left), indoor (center) and “Walk-circle” (right) sequences.

Note that the groundtruth is not available for these sequences
and that for each frame, the bounding-box is estimated using
a simple Kalman filter. The good results obtained with such
setting demonstrate that the method behaves quite well even
if it is not provided with the exact bounding-box taken from
groundtruth.

Segmentation and estimated 2D poses resulting from the pro-
posed model-based approach are presented together in Fig. 20
while numerical evaluation is given in Fig. 21. This evaluation
has been obtained using the on-line evaluation system and the
metrics provided for 2D pose estimation i.e. the average dis-
tance in pixels over all the 13 2D key-points of the stick model.
For each sequence, this error is shown for all the processed
frames in Fig. 21 and the average error per sequence (over all
the frames) is given in Table 3.

In the four sequences, the human body was segmented and
tracked successfully as can be seen in Fig. 20, maintaining the
sequentiality of the motion even if some pics can be observed
in the error curve. However, the average difference is quite high
in all the frames even when the result is shown to be visually
accurate in Fig. 20. This can be explained by the differences
in defining the joint centers in the proposed skeleton model
(constructed from hand-labelled data) and in the marker-based
system, which causes an offset clearly observable in Fig. 21.

7. Conclusions and discussions

This paper has presented a novel probabilistic spatio-
temporal 2D-models framework for human motion analysis.
In this approach, the 2D-shape of the entire body has been
associated to the corresponding stick figure allowing the joint
segmentation and pose recovery of the subject observed in the
scene along a sequence.

The problem of non-linearity has been solved by fitting a
Gaussian mixture model (GMM) to several training views.
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Fig. 18. Results obtained for the outdoor “Walkcircle” sequence with constant speed and constant viewpoint and scale changes from Ref. [3]: (a) estimated
shapes and poses represented on the original image for frames 1, 15, 25, 40, 50, 60, 75 90, 100, 115, 130 and 140, (b) 12 corresponding PTM matrices and
(c) 2D poses estimated along the complete sequence.

Since shape variations of articulated objects are closely linked
to the pose evolution along time, the total training set has been
clustered using only the structural information projected in the
pose eigenspace. In order to simplify the problem, only the
most non-linear components have been selected to perform the
clustering of the data in a lower dimensional space. The op-
timal number of clusters has been determined by considering
the mean Gaussianity of the GMM. This approach has been
compared to other two methods developed to cope with shape
models non-linearity: GMM exhibits best results than both ICA

and NN methods, and shows a better capability to reconstruct
unseen shapes.

To cope with the restriction to the viewpoint, local spatio-
temporal 2D-models corresponding to many views of the same
sequences were trained, concatenated and sorted in a global
framework (a multi-view GMM). When processing a sequence,
temporal and spatial constraints are considered to build the
probabilistic transition matrix (PTM) that gives the frame to
frame prediction of the most probable models from the frame-
work. The proposed fitting algorithm, combined with the new
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Fig. 19. Results obtained for the indoor “Elevator” sequence with viewpoint and speed changes: (a) estimated shapes and poses represented on the original image
for frames 1, 18, 30, 38, 48, 58, 68, 88, 100, 122, 128 and 142, (b) 12 corresponding PTM matrices and (c) 2D poses estimated along the complete sequence.

probabilistic models, allows a faster and more reliable estima-
tion of both pedestrian Silhouette and stick figure in real monoc-
ular sequences. The experiments carried out on both indoor
and outdoor sequences have demonstrated the ability of this
approach to adequately segment the pedestrians and estimate
their postures independently of the direction of motion during
the sequence. They have also demonstrated that the method
responds quite robustly to any change of direction during the
sequence. However, further work must be done.

The main ongoing work relies on addressing the tracking
issue to estimate both location of the person in the image and

model parameters during the sequence. The case of multiple
people tracking with occlusions has to be considered. Moreover,
the assumption has been made that temporal and spatial events
are independent. In future research this assumption have to
be evaluated in detail since it is not strictly true: a pedestrian
can change direction only during the second part of the swing
phases of the gait cycle.

In the presented example, only one value has been considered
for the elevation angle, due to practical reasons. To deal with
different tilt angles, a preprocessing stage can be considered
to remove the perspective effect as we proposed in Ref. [43].
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Fig. 20. Segmentation and 2D pose estimation obtained for the four HumanEva testing sequences. From up to down: Subject S2, camera views C1 (1st line)
and C2 (2nd line), and Subject S4, camera views C1 (3rd line) and C2 (4th line). For each sequence, frames 1, 20, 40, 60, 80 …300, 320, 340 and 350 are
represented.

Fig. 21. Numerical results obtained for the four HumanEva testing sequences: for Subject S2 (up) and S4 (down). In both cases, the average error of 2D pose
reconstruction is given for camera views C1 (left) and C2 (right).

Another possibility to handle large viewpoint changes (when
using roof-top cameras for example) is to train the model with
several values of this tilt angle as in Ref. [41]. The supplemen-

tary angle variation could then be represented by an additional
third dimension in the toroidal transition matrix in order to keep
the spatial continuity between viewpoints of connected cells.
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Table 3
2D pose average error on HumanEVA data set

Subject Camera Start End Mean error (pix)

S2 C1 1 350 16.96
S2 C2 1 350 18.53
S4 C1 1 290 16.36
S4 C2 1 290 14.88

Even though it has been tested with the specific gait motion,
the presented approach is generic and could be applied to any
other action. A large human motion capture database and a 3D
computer graphics human model will be used for synthesizing
automatically training pairs of 2D and 3D representations. In
this paper, a way has been provided to transition between view-
based manifolds of a same action. Transitions between different
activities sub-manifolds embedded in a global one will have
to be considered. Finally, even with large amounts of training
data (with numerous viewpoints), classification cannot expect
to be perfect. Other shape matching techniques could reduce
misclassifications and lack of correspondences between input
and training views.
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